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WIMP and LSP

 WIMPs have been long believed to be
a promising COM candidate.

 LSP is a good example of WIMP,

well motivated from the promising particle
ohysics model (i.e. MSSM).



Recently PAMELA/Fermi
reported very challenging
observational results.

PRL102,051101(2009); Nature 458, 607 (2009)
arXiv:0905.0025(astro—ph HE)

¢ PAM ELA (Payload for Anti Matter Exploration and Light nuclei Astrophysics)

[exp. by a SATELLITE] measures |
particles & nuclei fluxes in cosmic ray.

e Fermi [exp. by a SATELLITE] released data on
electrons & positrons fluxes in cosmic ray.



What are surprising?

PAMELA [arXiv.0810.4994,4995]
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What are surprising?
(PAMELA)

Significant energetic positron excesses

(10 GeV — 100 GeV)  are observed with small error bar.

The deviation at low energy can be explained by the solar modulation effect
[arXiv:0810.4994, 4995].

However,

No anti—proton excesses are observed.




What are surprising?

Fermi—LAT
[arXiv:0905.0025(astro—ph HE)]
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[100 GeV — 1000 GeV]
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What are surprising?
(Fermi—LAT)

Positron excess keeps rising

mildly upto 1 TeV.

As a strong possibility, it can be
interpreted as a result from eV scale

DM annihil. or decay.
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Theretfore,
If they are caused by DM Annihilation,

DM is predominantly annihilated
to ete".

- DM has a small branching ratio
to proton—antiproton.

- DM mass should be around 1 TeV.



To explain the e* excess
with annihilation,
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 Should overcome “helicity suppression,’
to enhance DM annihl. to ete™ .
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To explain the e* excess
with annihilation,

 Should overcome “helicity suppression,’
to enhance DM annihl. to ete™ .

e Should suppress the hadronic modes.

“Leptophilic annihilation !!”




Moreover,



MOI’GOVGI’, Berstone etal. [arxiv:0811.3744]

DM annihl. seems to be disfavored by
Gamma ray constraint,

if mgy ~ TeV (for explaining Fermi),
[®,, ¢ (p/mpy)?]  and

If accept
the galactic profile of NFW or Einasto,

because of
Bremsstrahlung at the galactic center.



DM DECAY for e* flux

(DM — et e, utu-, TH Tt + neutral ptl.)
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We DON’T have to consider “helicity suppression.”
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DM DECAY for e* flux

(DM — et e, utu-, TH Tt + neutral ptl.)

We DON’T have to consider “helicity suppression.”

Gamma ray constraint is NOT serious.
(D¢ (p/mpy)']
rladronic decay snould not excesd 10 7%,
.2, snould o2 “Leotoonilc Dacay”
Moy

y 10729 587l for nsad g7 fluy

Moy — 2 18Y 1or s/0laining Farrmi

5

\Various and/or rmany ood/ looiornic decays ar
d for mild oositron e4caess, [Bargirorm stal "09]
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DM DECAY for e* flux

(DM — e* e, utu-, TH Tt + neutral ptl.)

We DON’T have to consider “helicity suppression.”

Gamma ray constraint is NOT serious.
[®g, ¢ (p/mpy)']

Hadronic decay should not exceed 10 %.

i.e. should be “Leptophilc Decay”
Moy — 10726 sec™ for need e* flux
Mpy — 2 TeV for explaining Fermi
Various and/or many body leptonic decays are
needed for mild positron excess. [Bergtrom etal '09]
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Important Notice

=
Moy, Y -
DA ~ 107 gec. ™!

[ DM Y
| 109-+3 1 /4

by Dim. 6 operator suppr. by M25,; (4 fermion int.)

for Moy ~ 2TeV, Mgyr ~ 1016 GeV
(mgy ~ 100 GeV, Mgy ~ 1015GeV )

PAMELA/Fermi’s observ. might be a signal of GUT.
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For a promising DM Decay model,
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For a promising DM Decay model,

e |ntroduce Leptophilic int. between
superheavy fields and DM.

e Introduce other (global) symmetries to
completely kill the dim. 5 operators.
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For a promising DM Decay model,

e |ntroduce Leptophilic int. between
superheavy fields and DM.

e Introduce other (global) symmetries to
completely kill the dim. 5 operators.

e |Introduce an extra DM component
with a TeV scale mass
for light enough Higgs mass.



Two DM Model (I)

K. Bae, BK [arXiv:0902.3578]

< N E E* X X° 0 0°

Superfields ¢
Ul)y 1 0 q - ¢  q-1 —q+1
Ul)g 1 2/3 1/3 5/3 1 1 ( 2
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(N,x) : two DM components,

(E,EC), (X,Xc), (0O,0°) : (exotically charged)
vec.—like superheavy ptl.



Superpotl.

W = NEX + XOe® 4+ N°.
Wi, MrEE“+M~+~ XX+ M,0O0°.



Superpotl.

Wi = NEX + XOe® + N°,
Wi MpEE‘“+Mx X X+ M,00°.

Due to the A—term of NS,
<j?> ~ NN v O("?TZ:; /2)

U(1)g is broken to the “matter parity” in the MSSM.



Superpotl.

Wi = NEX + XOe® + N°,
Wi MpEE‘“+Mx X X+ M,00°.

Due to the A—term of NS,
<j?> ~ NN v O("?TZ:; /2)

U(1)g is broken to the “matter parity” in the MSSM.
SO, Mgy =my ~ 2TeV, and N can decay

N —y+e +et
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g (V) Penguin—type one loop

R decay diagram of N
E}, ST~ ‘X
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3 INTEGER charges.
g’: " o |
. 112 neayy L oies
MuUst e co—cradtad
and co—anninilatad
SEWVEEISRISERISINE]

ard final siaiss,



g o (V) Penguin—type one loop

I decay diagram of N
NP ¢
' v ‘ The light External
x> —"0 particles carry the
INTEGER charges.
g \X\ The heavy Exotics
must be co—created

and co—annihilated
between the initial
and final states.
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for mpy~ 2 TeV, mg,,~<N> ~ 0(102-103) GeV.
For simplicity, we set

Me = My = My= M, = 1075716 GeV.

The Exotics superheavy masses are responsible for the
extremely small DM decay rate.
Tnis modzl can og 2asily axiandad sucrn nai

B
O

)

N —aTtaT LT, nTnT and/or N — \/,]29*29_

/“ - ) —-



- 492 - ~ -

bo

5 ! , N\
o MM y V2g y ms 2 (N) < O(yY) x N
T 1927 T [ 23/2m, 4872 M2 |

rw — 10_26 SeC_1,

for mgy~ 2 TeV, mg~<N> ~ O(102-103) GeV.
For simplicity, we set

Mc = My = Mg= M, = 1015-16 GeV.

The Exotics superheavy masses are responsible for the
extremely small DM decay rate.
This model can be easily extended such that

N —xe*e”, xu*u-, xt*t", and/or N — v 2e*2e", etc.



PAMELA/Fermi anomaly
is NOTHING
in 2—0OM decay model !!




PAMELA/Fermi anomaly
is NOTHING
in 2—0OM decay model !!

(o 1[N
(I)€+(E)—(”ZDM> ’FDM X 4b(E) /E dE 0 ]()\D)

In 2-DM maodel, (p/mg,) can be smaller,

only if Iy, IS larger,
[but My, < 10717 sec!, (age of univ.) '],

because the needed pp,, ~ 10° GeV cm™
can be supported by X.




Even extremely small amount of N
[ O(10719) < (ny/n, )]

can produce the positron flux needed to
account for PAMELA/Fermi data,

only if the decay rate is enhanced
by relatively lighter M, ,

[10'2 GeV < M, < 1076 GeV].



Two DM Model (1)

BK [arXiv:0902.0071]
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lepton singlets (E,E°) :



Two DM Model (Il)

BK [arXiv:0902.0071]

* |Introduce one more DM component N.

* Consider leptophilic couplings of N
with the superheavy vec.—like
SU(2) lepton doublets (L,L¢), and
lepton singlets (E,E°) :

Wivdeeay = Ne'FE + LhyE* + N + mg/g{ L
Woas = ML+ MpEE+ myNN‘ 4 my ph,hy.



Using the equations of motion,

ILJOE = OL/OE = OL/OL = OL/IL° = 0
or

B = N [Mg. B = () L/Mp, 1 = =(hy) B My, and L = =myply M,

One can integrate out the heavy fermions, and obtain
the effective Lagrangian or effective Kahler potential:
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et / Mg, T

M3/

Lo =
t Ml




( :3/2 - - -~ - -~ -
Ne / N B E* L L* l1]e]
\‘\




( "mé/Q\ MEg T My, ms /o
NCVAN, E E© L L I1]e]
g:\ X

\
:\T — X ‘|‘ e _|_ E)+ )

- / - ')

m- ho) (D a
[y~ ——— X 9 ) ha) x O(y"),
19273 | 2m2. Mg My

My — MB/[192183 (MM )?] ~ 10726 sec,

for mpy,~ 2TeV, Mg ~ M| ~ 10 GeV
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In the both Models,
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In the both Models,

e The low energy field spectrum Is
exactly the same as that of the MSSM
except for a neutral singlet N.

— gauge coupling unif. at 101% GeV

e The low energy symmetry iIs just that
of SM and R—parity.



In the both Models,

e The low energy field spectrum Is
exactly the same as that of the MSSM
except for a neutral singlet N.

— gauge coupling unif. at 101% GeV

e The low energy symmetry iIs just that
of SM and R—parity.

» For lighter M, (~10'2 GeV), one can
rescue the MSSM CDM scenario.
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Conclusions |

For explainig PAMELA/Fermi data, we need a DM decay model having

* Leptophilic int. between superheavy
flelds and DM,

» Other (global) symmetry for dim. 6
decay dominance,

 An extra DM component with TeV
scale mass for low energy SUSY.

We propose two 2—DM decay models, in which



Conclusions |

Explain PAMELA/Fermi data with leptophilic
YUKAWA couplings between GUT scale fields
and an extra DM component N (N — xI*I7).
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Conclusions |

o Explain PAMELA/Fermi data with leptophilic
YUKAWA couplings between GUT scale fields

and an extra DM component N (N — xI*I7).

 Even extremely small amount of N can explain
the PAMELA/Fermi data.
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Conclusions |

Explain PAMELA/Fermi data with leptophilic
YUKAWA couplings between GUT scale fields
and an extra DM component N ( N — xI*I7).

Even extremely small amount of N can explain
the PAMELA/Fermi data.

The nobleness of the MSSM (SUSY at 102 GeV,
gauge coupling unif., xCDM) can be maintained.

The models can be easily embedded in Flipped
SU(5), which is the leptophilic GUT.



Problems in DM annihilation

« Should overcome the helicity suppr.
» Serious gamma ray constraint (TeV DM)

* |ntroduction of a new TeV DM and new
interactions are Ad hoc.



Problems in DM decay

Desired relic density is not automatic.

Need a natural explanation for 10726
sec.”! decay rate.

Need an elaborate decay process for
Fermi.

Introduction of a new TeV DM and
new interactions are Ad—hoc.



From now on, | will try to explain PAMELA
only within the framework of a well-
known Particle physics model, SO(10)
without introducing any new DM and

new special interactions.

| suppose that DM is the bino—like LSP.



SO(10)
455, = SM + {E,E¢} + N

+1Q,Q° ¢} +1Q,Q% U,L

}

SO(10) — SU(3).xSU(2) xSU(2)xU(1)4_ =LR

by <45,> , {Q",Q’°}, {Q,Q¢ U,Uc}

massive

SO(10) — SU(5) by <16,>, <16% >
{E,E°}, N, {Q,Q¢; U,Uc} massive



<45.,>is 106 GeV from RG eff.of the MSSM
gauge couplings, but

<16y> is not pinned down yet.

f <45,> > <16,> = <16%,>,
masses of {Q’,Q’¢}, {Q,Q¢; U,Uct > {E,Ec}, N

|f <45|_|> < <16H> - <16*H> ,
masses of {E,Ec}, N, {Q,Qc; U,Uc} > {Q’,Q’c}

So {Q,Q¢; U,Uc} are always heavier.
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Superheavy fields in SO(10)

- Gauge boson/Gauginos of SO(10)/SM
» Triplets in 10,, (={D¢,hy}+{D,h,})

e.g. by 10, <45.> 10,
- GUT orsaving rliggs

cue to s VeV, iney couole o MSSV
fields only via non—=renormelizaole
erms. ITney weeayly couolaed 1o SV



Superheavy fields in SO(10)

- Gauge boson/Gauginos of SO(10)/SM
» Triplets in 10,, (={D¢,hy}+{D,h,})

e.g. by 10, <45.> 10,
 GUT breaking Higgs

due to its VEV, they couple to MSSM
fields only via non—-renormalizable
terms. They weakly coupled to SM



LSP decay due to sRH v

« |If (1) R—parity is absolutely preserved,
and (2) x is the LSP, x can not decay.
> BUT If sRrl v daveloos a VEY (R viol.),

r‘)l

Y (
or sEF v is lignter than o (SR oy SP)

, )1

o mrl v oand sEel v are neuiral singleis
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LSP decay due to sRH v

7 (1) B=oarity is aosolutely oresarved,
anc (2) w s ine LSP, « can not dacay,

e BUT if sRH v develops a VEV (R viol.),
or sRH v is lighter than x (sRH v LSP),

X could decay.

, M)l

> Hrl v oand sEel vy are nzuiral singleis
Under S Were It not Tor \/\/—Iml]‘\/d I
csirernely wearly inieracing wWitr M.

2



LSP decay due to sRH v

« BUT if sRH v develops a VEV (R viol.),
or sRH v is lighter than x (sRH v LSP),

X could decay.

« RH v and sRH v are neutral singlets

under SM. Were it not for W=lh V¢, it
extremely weakly interacting with SM.



Interactions of the MSSM fields and heavy gauginos
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-or leptophilic x decay,
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-or leptophilic x decay,

» <16,> << <45,,>, effectively LR model

c f sve is neavisr narn g,
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o Sauargs, crardad flicas, and soft oare,
are mucn neavisr (1 TaY) than 2 slagiorn,

o ror PAMELA rr,~ 200 =300 CEYS
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-or leptophilic x decay,

» <16,> << <45, >, effectively LR model

* |f sv¢ is heavier than x,
a non—zero VEV <sv¢> must be assumed.
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-or leptophilic x decay,

» <16,> << <45, >, effectively LR model

* |f sv¢ is heavier than x,
a non—zero VEV <sv¢> must be assumed.

« Squarks, charged Higgs, and soft para.
are much heavier (1 TeV) than a slepton.

 For PAMELA, m,~ 200 — 300 GeYV,
Fermi is explained with astrophys. source.
* One RH v is lighter than x.



Even with 2 RH v,
seesaw mech. is still O.K.

7 vV c/ - 1 4 c,,Clr -
W, = yz-(j) Liha v (j # 1) + 51\;{@’3- vivi(i,j # 1),

(0o o) (0 0 0 V[0 0 0)

m, =m, =—1 0 vy Vo 0 My My V12 U22 V32
\U Usp V33 ) \0 Msg" Mgy } \‘Uy; U9y U33 )

Still 3 LH v can be maximally mixed.
[Frampton, Glashow, Yanagida (2002)]



If SRHvV is lighter than x, a VEV of sRHvV Is
not essential. — 4 bdy decay !!

Just for simplicity, assume a VEV of sRHv.
(— 3 bdy decay) e.g. by

| ‘
Mp
R(16,) = R(S) = 2/3
R(16%,) = 0 Mg

~C
N () Mgy X —
including soft terms in V, J[p




LSP decay diagram




Charged gaugino mediation

\ /
\ /
\  SC* Ck g

y €1 "1 4

Dirac mass Mg by
Gauge sym. breaking

Majorana mass m;

> py SUSY breaking

This diagram Is suppressed by

My o/ Mg?



Neutral gaugino mediation

\ g S O 7
» €1 o Y1 4
\\ 1/2 /z
Fr, Fr,
N N
el 21

AR~ (2/3)1/2 Je-L = 910
My = Mg x (5/2)1/2
Eff. coupling is 4 of the C.C. case.

Suppressed by 2/5x 1/4 =1/10
Compared to the C.C. case



Charged gauge field mediation

A derivative coupling is involved.

Since my,, >> m,, this diagram is suppressed.



The 1st realization of I, ~ 1/Mgy* from the gauge interaction



The decay rate of x is

A )\ 2 ) x 2
Oy [myp(P) ) 00 my(my My ~ 1075 gee, ™!
X~ el ) Y RV? )

To oe consistent with the PAMELA's da

? Arl v masses — 1019 Gay



The decay rate of x is
2

) )
2 1.5 ~e\\ 2 1.5 -
P O My [ My lP) Oy [y Mgy | 1075 go -]

To be consistent with the PAMELA’s data,
Mc ~ <16,> ~ 10" GeV

2 RH v masses ~ 1010 GeV

I — = |
from WD v(ng}(lBg}lelﬁj(i,j £1) 2 (10" GeV) x vivili.g # 1)
Mp



Conclusions |l
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Conclusions |l

« Still the bino—like LSP DM scenario is
consistent with PAMELA,

if sSRH v develops a VEV or is lighter than
bino, and a RH v is light enough.

- SO(10) provides a relatively predictable
explanation.

* |n the specific case, LR breaking scale is
1014 GeV, and the seesaw scale is 100 GeV.
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