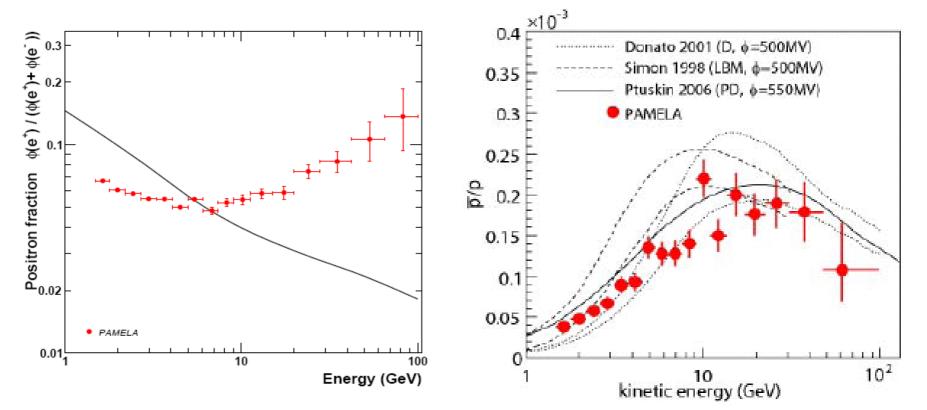
Decaying LSP in the Minimal SO(10) and PAMELA'S COSMIC POSITRON

Bumseok Kyae (SNU)

arXiv:0809.2601 (J.-H. Huh, J.E. Kim, <u>BK</u>), arXiv:0812.3511 (K. Bae, J.-H. Huh, J.E. Kim, <u>BK</u>, R.Viollier) arXiv:0902.0071 (<u>BK</u>) arXiv:0902.3578 (K. Bae, <u>BK</u>) arXiv:0909.xxxx (<u>BK</u>)

WIMP and LSP

• WIMPs have been long believed to be a promising CDM candidate.


 LSP is a good example of WIMP, well motivated from the promising particle physics model (i.e. MSSM). Recently PAMELA/Fermi reported very challenging observational results.

PRL102,051101(2009); Nature 458, 607 (2009) arXiv:0905.0025(astro-ph HE)

- PAMELA (Payload for Anti Matter Exploration and Light nuclei Astrophysics)
 [exp. by a SATELLITE] measures particles & nuclei fluxes in cosmic ray.
- Fermi [exp. by a SATELLITE] released data on electrons & positrons fluxes in cosmic ray.

What are surprising?

PAMELA [arXiv.0810.4994,4995]

PAMELA positron fraction v.s. theoretical models (by Moskalenko & Strong '98)

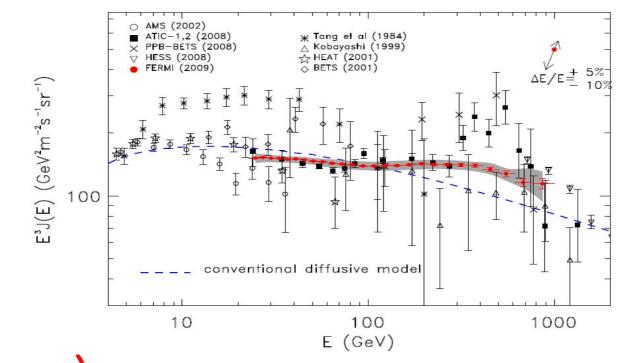
PAMELA anti-proton/proton flux ratio v.s. theoretical calculation

What are surprising? (PAMELA)

Significant energetic positron excesses

(10 GeV – 100 GeV) are observed with small error bar.

The deviation at low energy can be explained by the solar modulation effect [arXiv:0810.4994, 4995].


However,

No anti-proton excesses are observed.

What are surprising?

Fermi-LAT

[arXiv:0905.0025(astro-ph HE)]

 $(e^+ + e^-)$ excesses of cosmic ray are observed.

[100 GeV - 1000 GeV]

What are surprising? (Fermi-LAT)

Positron excess keeps rising

mildly upto 1 TeV.

As a strong possibility, it can be interpreted as a result from TeV scale DM annihil, or decay.

What are surprising? (Fermi-LAT)

Positron excess keeps rising

mildly upto 1 TeV.

As a strong possibility, it can be interpreted as a result from TeV scale DM annihil. or decay.

- DM is predominantly annihilated to eter.
- DM has a small branching ratio
 to proton-antiproton.
 - · DM mass should be around 1 TeV.

 DM is predominantly annihilated to e⁺e⁻.

DM has a small branching ratio
 to proton-antiproton.

· DM mass should be around 1 TeV.

- DM is predominantly annihilated to e⁺e⁻.
- DM has a small branching ratio to proton-antiproton.
- · DM mass should be around 1 TeV.

- DM is predominantly annihilated to e⁺e⁻.
- DM has a small branching ratio to proton-antiproton.
- DM mass should be around 1 TeV.

To explain the e⁺ excess with annihilation,

- Should overcome "helicity suppression,"
 to enhance DM annihl. to etet.
- Should suppress the hadronic modes.

"Laptophilic annihilation !!"

To explain the e⁺ excess with annihilation,

- Should overcome "helicity suppression," to enhance DM annihl. to e⁺e⁻.
- Should suppress the hadronic modes.

"Laptophilic annihilation !!"

To explain the e⁺ excess with annihilation,

- Should overcome "helicity suppression," to enhance DM annihl. to e⁺e⁻.
- Should suppress the hadronic modes.

"Leptophilic annihilation !!"

Moreover,

Moreover, Berstone etal. [arXiv:0811.3744]

DM annihl. seems to be disfavored by Gamma ray constraint,

 $\begin{array}{l} \mbox{if } m_{\rm DM} \sim \mbox{TeV} \mbox{ (for explaining Fermi),} \\ [\Phi_{\rm e^+} \propto \mbox{ (} \rho/m_{\rm DM})^2] \mbox{ and} \end{array} \\ \mbox{if accept} \\ \mbox{the galactic profile of NFW or Einasto,} \end{array}$

because of Bremsstrahlung at the galactic center.

DM <u>DECAY</u> for e⁺ flux (DM \rightarrow e⁺ e⁻, µ⁺ µ⁻, $\tau^+ \tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious.
 [m_{DM})^T]
- Hadronic decay should not exceed 10 %.
 i.e. should be "Leptophilc Decay"
- $\sim 10^{-28} \, {\rm sec^{-1}}$ for need et flux
- $\sim m_{\rm DM} \sim 2$ TeV for explaining Fermi
- Various and/or many body leptonic decays are needed for mild positron excess. [Bergtrom etal '09]

DM <u>DECAY</u> for e⁺ flux (DM \rightarrow e⁺ e⁻, $\mu^+\mu^-$, $\tau^+\tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious.
 [m_{DM})^T]
- Hadronic decay should not exceed 10 %.
 i.e. should be "Leptophilc Decay"
- $\sim \Gamma_{\rm DM} \sim 10^{-28} \, {\rm sec^{-1}}$ for need et flux
- $\sim m_{\rm DM} \sim 2$ TeV for explaining Fermi
- Various and/or many body leptonic decays are needed for mild positron excess. [Bergtrom etal '09]

DM <u>DECAY</u> for e⁺ flux (DM \rightarrow e⁺ e⁻, $\mu^+\mu^-$, $\tau^+\tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious. $[\Phi_{e^+} \propto (\rho/m_{DM})^1]$
- Hadronic decay should not exceed 10 %.
 i.e. should be "Leptophilc Decay"
- $\sim 10^{-28} \, {\rm sec^{-1}}$ for need et flux
- $\sim m_{\rm DM} \sim 2$ TeV for explaining Fermi
- Various and/or many body leptonic decays are needed for mild positron excess. [Bergtrom etal '09]

DM <u>DECAY</u> for e⁺ flux (DM \rightarrow e⁺ e⁻, µ⁺µ⁻, $\tau^+ \tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious. $[\Phi_{e^+} \propto (\rho/m_{DM})^1]$
- Hadronic decay should not exceed 10 %.
 i.e. should be "Leptophilc Decay"
- $\sim 10^{-28} \, {\rm sec^{-1}}$ for need et flux
- $\sim m_{\rm DM} \sim 2$ TeV for explaining Fermi
- Various and/or many body leptonic decays are needed for mild positron excess. [Bergtrom etal '09]

DM <u>DECAY</u> for e⁺ flux (DM \rightarrow e⁺ e⁻, $\mu^+\mu^-$, $\tau^+\tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious. $[\Phi_{e^+} \propto (\rho/m_{DM})^1]$
- Hadronic decay should not exceed 10 %.
 i.e. should be "Leptophilc Decay"
- $\Gamma_{DM} \sim 10^{-26} \text{ sec}^{-1}$ for need e⁺ flux
- $\sim m_{\rm DM} \sim 2$ TeV for explaining Fermi
- Various and/or many body leptonic decays are needed for mild positron excess. [Bergtrom etal '09]

DM <u>DECAY</u> for e⁺ flux (DM \rightarrow e⁺ e⁻, µ⁺µ⁻, $\tau^+ \tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious. $[\Phi_{e^+} \propto (\rho/m_{DM})^1]$
- Hadronic decay should not exceed 10 %.
 i.e. should be "Leptophilc Decay"
- $\Gamma_{DM} \sim 10^{-26} \text{ sec}^{-1}$ for need e⁺ flux
- $m_{DM} \sim 2 \text{ TeV}$ for explaining Fermi
- Various and/or many body leptonic decays are needed for mild positron excess. [Bergtrom etal '09]

DM <u>DECAY</u> for e⁺ flux (DM \rightarrow e⁺ e⁻, µ⁺µ⁻, $\tau^+ \tau^-$ + neutral ptl.)

- We DON'T have to consider "helicity suppression."
- Gamma ray constraint is NOT serious. $[\Phi_{e+} \propto (\rho/m_{DM})^{1}]$
- Hadronic decay should not exceed 10 %.
 i.e. should be "Leptophilc Decay"
- $\Gamma_{DM} \sim 10^{-26} \text{ sec}^{-1}$ for need e⁺ flux
- $m_{DM} \sim 2 \text{ TeV}$ for explaining Fermi
- Various and/or many body leptonic decays are needed for mild positron excess. [Bergtrom etal '09]

Important Notice

Important Notice

$$\Gamma_{\rm DM} \sim \frac{m_{\rm DM}^5}{192\pi^3 M_{\rm GUT}^4} \sim 10^{-26} \, {\rm sec.}^{-1}$$

by Dim. 6 operator suppr. by M^2_{GUT} (4 fermion int.)

for $m_{DM} \sim 2~TeV$, $~~M_{GUT} \sim 10^{16}~GeV$ ($m_{DM} \sim 100~GeV$, $~~M_{GUT} \sim 10^{15}~GeV$)

Important Notice

$$\Gamma_{\rm DM} \sim \frac{m_{\rm DM}^5}{192\pi^3 M_{\rm GUT}^4} \sim 10^{-26} \, {\rm sec.}^{-1}$$

by Dim. 6 operator suppr. by M^2_{GUT} (4 fermion int.)

for $m_{DM} \sim 2~TeV$, $~~M_{GUT} \sim 10^{16}~GeV$ ($m_{DM} \sim 100~GeV$, $~~M_{GUT} \sim 10^{15}~GeV$)

PAMELA/Fermi's observ. might be a signal of GUT.

- Introduce Leptophilic int. between superheavy fields and DM.
- Introduce other (global) symmetries to completely kill the dim. 5 operators.
- Introduce an extra DM component with a TeV scale mass for light enough Higgs mass.

- Introduce Leptophilic int. between superheavy fields and DM.
- Introduce other (global) symmetries to completely kill the dim. 5 operators.
- Introduce an extra DM component with a TeV scale mass for light enough Higgs mass.

- Introduce Leptophilic int. between superheavy fields and DM.
- Introduce other (global) symmetries to completely kill the dim. 5 operators.
- Introduce an extra DM component with a TeV scale mass for light enough Higgs mass.

- Introduce Leptophilic int. between superheavy fields and DM.
- Introduce other (global) symmetries to completely kill the dim. 5 operators.
- Introduce an extra DM component with a TeV scale mass for light enough Higgs mass.

Two DM Model (I) K. Bae, <u>BK</u> [arXiv:0902.3578]

Superfields	e^{c}	N	E	E^c	X	X^c	0	O^c
$U(1)_{Y}$	1	0	q	-q	-q	q	q - 1	-q + 1
$\mathrm{U}(1)_{\mathrm{R}}$	1	2/3	1/3	5/3	1	1	0	2
(\mathcal{G})	1	1	(\mathcal{R})	(\mathcal{R}^*)	(\mathcal{R}^*)	(\mathcal{R})	(\mathcal{R})	$(\ \mathcal{R}^{*} \)$

(N,χ) : two DM components,

(E,E^c), (X,X^c), (O,O^c) : (exotically charged) vec.-like superheavy ptl.

Superpotl.

 $W_{\text{tri}} = \mathbf{N}EX + XO\mathbf{e}^{\mathbf{c}} + \mathbf{N}^{\mathbf{3}},$ $W_{\text{bi}} = M_{E}EE^{\mathbf{c}} + M_{X}XX^{\mathbf{c}} + M_{O}OO^{\mathbf{c}}.$ Superpotl.

$W_{\text{tri}} = \mathbf{N}EX + XO\mathbf{e}^{\mathbf{c}} + \mathbf{N}^{\mathbf{3}},$ $W_{\text{bi}} = M_E E E^{\mathbf{c}} + M_X X X^{\mathbf{c}} + M_O OO^{\mathbf{c}}.$

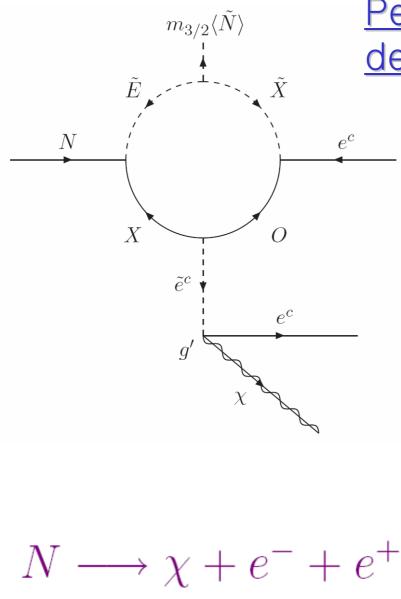
Due to the A-term of N^3 ,

$$\langle \tilde{N} \rangle \sim m_N \sim \mathcal{O}(m_{3/2})$$

 $U(1)_R$ is broken to the "matter parity" in the MSSM.

Superpotl.

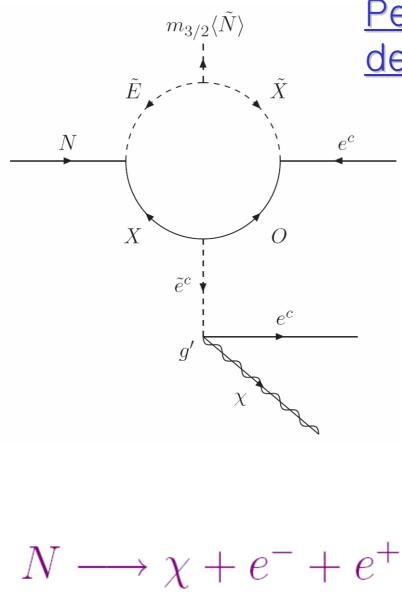
$W_{\text{tri}} = \mathbf{N}EX + XO\mathbf{e}^{\mathbf{c}} + \mathbf{N}^{\mathbf{3}},$ $W_{\text{bi}} = M_{E}EE^{\mathbf{c}} + M_{X}XX^{\mathbf{c}} + M_{O}OO^{\mathbf{c}}.$


Due to the A-term of N^3 ,

$$\langle \tilde{N} \rangle \sim m_N \sim \mathcal{O}(m_{3/2})$$

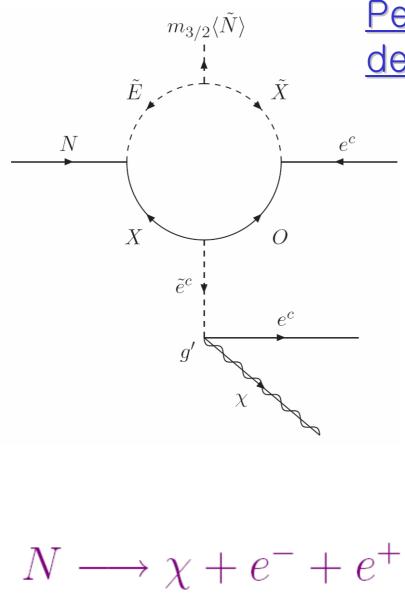
 $U(1)_R$ is broken to the "matter parity" in the MSSM.

So, m_{DM} = m_{N} \sim 2 TeV , and N can decay


$$N \longrightarrow \chi + e^- + e^+$$

<u>Penguin-type one loop</u> <u>decay diagram of N</u>

The light External particles carry the INTEGER charges.


The heavy Exotics must be co-created and co-annihilated between the initial and final states.

<u>Penguin-type one loop</u> <u>decay diagram of N</u>

The light External particles carry the INTEGER charges.

The heavy Exotics must be co-created and co-annihilated between the initial and final states.

<u>Penguin-type one loop</u> <u>decay diagram of N</u>

The light External particles carry the INTEGER charges.

The heavy Exotics must be co-created and co-annihilated between the initial and final states.

$$\Gamma_N \approx \frac{m_{\rm DM}^5}{192\pi^3} \times \left[\frac{\sqrt{2}g'}{2^{3/2}m_{\tilde{e}^c}^2}\right]^2 \times \left[\frac{m_{3/2}\langle \tilde{N} \rangle}{48\pi^2 M_*^2} \times \mathcal{O}(y^4) \times \mathcal{N}\right]^2$$
$$\underbrace{\Gamma_{\underline{\rm DM}} \sim 10^{-26} \, \mathrm{sec}^{-1}}_{\mathrm{e}^{-1}},$$

for $m_{DM} \sim 2$ TeV, $m_{3/2} \sim \langle N \rangle \sim O(10^2 - 10^3)$ GeV. For simplicity, we set $M_E = M_X = M_0 = M_* = 10^{15-16}$ GeV.

The Exotics superheavy masses are responsible for the extremely small DM decay rate. This model can be easily extended such that

 $N \rightarrow \chi_{\mu}^{+}2e^{+}2e^{-}$, $\chi_{\mu}^{+}\mu^{-}$, $\chi_{\tau}^{-}\tau^{-}$, and/or $N \rightarrow \gamma_{\mu}^{-}2e^{+}2e^{-}$, etc.

$$\Gamma_N \approx \frac{m_{\rm DM}^5}{192\pi^3} \times \left[\frac{\sqrt{2}g'}{2^{3/2}m_{\tilde{e}^c}^2}\right]^2 \times \left[\frac{m_{3/2}\langle \tilde{N} \rangle}{48\pi^2 M_*^2} \times \mathcal{O}(y^4) \times \mathcal{N}\right]^2$$
$$\underbrace{\Gamma_{\underline{\rm DM}} \sim 10^{-26} \, \mathrm{sec}^{-1}}_{\mathrm{e}^{-1}},$$

for $m_{DM} \sim 2$ TeV, $m_{3/2} \sim \langle N \rangle \sim O(10^2 - 10^3)$ GeV. For simplicity, we set $M_E = M_X = M_0 = M_* = 10^{15-16}$ GeV.

The Exotics superheavy masses are responsible for the extremely small DM decay rate.

This model can be easily extended such that

 $N \rightarrow \chi_{\mu}^{+} \gamma_{\mu}^{-}$, $\chi_{\mu}^{+} \gamma_{\mu}^{-}$, $\chi_{\mu}^{+} \gamma_{\mu}^{-}$, and/or $N \rightarrow \gamma_{\mu}^{-} 2e^{+} 2e^{-}$, etc.

$$\Gamma_N \approx \frac{m_{\rm DM}^5}{192\pi^3} \times \left[\frac{\sqrt{2}g'}{2^{3/2}m_{\tilde{e}^c}^2}\right]^2 \times \left[\frac{m_{3/2}\langle \tilde{N} \rangle}{48\pi^2 M_*^2} \times \mathcal{O}(y^4) \times \mathcal{N}\right]^2$$
$$\underbrace{\Gamma_{\underline{\rm DM}} \sim 10^{-26} \, \mathrm{sec}^{-1}}_{\mathrm{e}^{-1}},$$

for $m_{DM} \sim 2$ TeV, $m_{3/2} \sim \langle N \rangle \sim O(10^2 - 10^3)$ GeV. For simplicity, we set $M_E = M_X = M_O = M_* = 10^{15-16}$ GeV.

The Exotics superheavy masses are responsible for the extremely small DM decay rate. This model can be easily extended such that

 $N \rightarrow \chi e^+e^-$, $\chi \mu^+\mu^-$, $\chi \tau^+\tau^-$, and/or $N \rightarrow \nu_{\mu} 2e^+ 2e^-$, etc.

PAMELA/Fermi anomaly is NOTHING in 2-DM decay model !!

PAMELA/Fermi anomaly is NOTHING in 2-DM decay model !!

$$\Phi_{e^+}(E) = \left(\frac{\rho}{m_{\rm DM}}\right) \cdot \Gamma_{\rm DM} \times \frac{1}{4b(E)} \int_E^{m_{\rm DM}} dE' \; \frac{dN_{e^+}}{dE'} \; I(\lambda_D),$$

In 2-DM model, (ρ/m_{DM}) can be smaller, only if Γ_{DM} is larger, [but $\Gamma_{DM} < 10^{-17} \text{ sec}^{-1}$, (age of univ.)⁻¹],

because the needed $\rho_{DM} \sim 10^{-6} \text{ GeV cm}^{-3}$ can be supported by χ . Even extremely small amount of N

can produce the positron flux needed to account for PAMELA/Fermi data,

only if the decay rate is enhanced by relatively lighter M_{\star} ,

 $[10^{12} \text{ GeV} < M_* < 10^{16} \text{ GeV}].$

Two DM Model (II) <u>BK</u> [arXiv:0902.0071]

- Introduce one more DM component M.
- Consider leptophilic couplings of N with the superheavy vec.-like SU(2) lepton doublets (L,L^c), and lepton singlets (E,E^c) ;

Two DM Model (II) BK [arXiv:0902.0071]

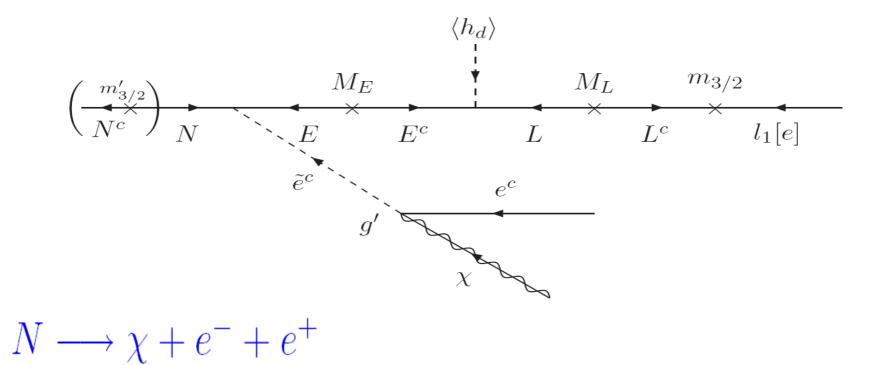
- Introduce one more DM component N.
- Consider leptophilic couplings of N with the superheavy vec.-like SU(2) lepton doublets (L,L^c), and lepton singlets (E,E^c) :

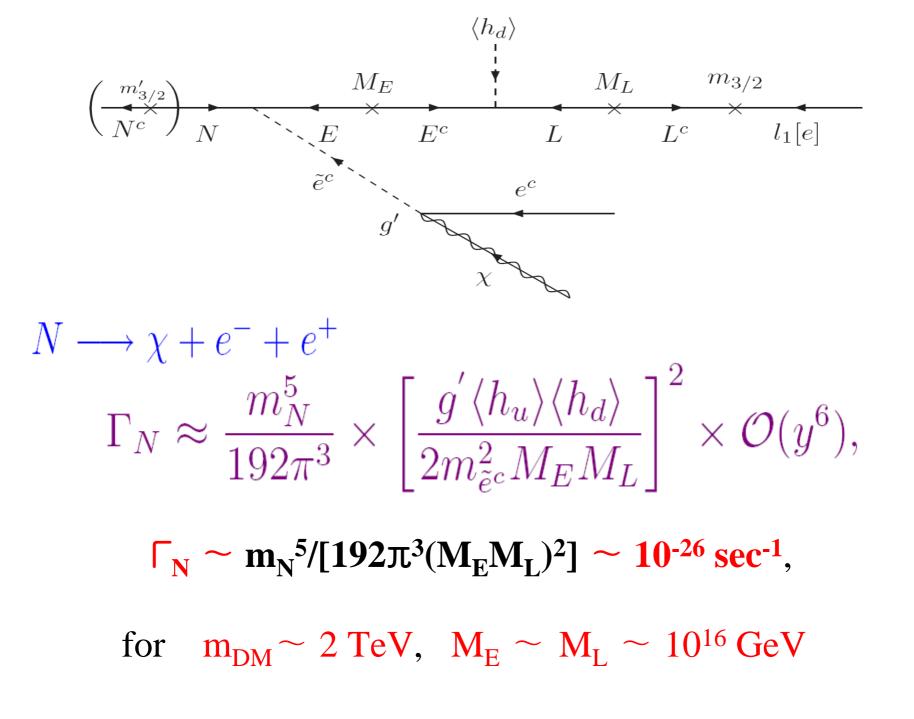
Two DM Model (II) <u>BK</u> [arXiv:0902.0071]

- Introduce one more DM component N.
- Consider leptophilic couplings of N with the superheavy vec.-like SU(2) lepton doublets (L,L^c), and lepton singlets (E,E^c) :

$$W_{N \text{decay}} = N e^{c} E + L h_{d} E^{c} + N^{3} + m_{3/2} l_{1} L^{c},$$

 $W_{\rm mass} = M_L L L^c + M_E E E^c + m_N N N^c + m'_{3/2} h_u h_d,$


Using the equations of motion,


$$\partial \mathcal{L}/\partial E = \partial \mathcal{L}/\partial E^c = \partial \mathcal{L}/\partial L = \partial \mathcal{L}/\partial L^c = 0$$
 or

 $E^c = -\tilde{e}^c N/M_E, E = -\langle h_d \rangle L/M_E, L^c = -\langle h_d \rangle E^c/M_L, \text{ and } L = -m_{3/2}l_1/M_L$

One can integrate out the heavy fermions, and obtain the effective Lagrangian or effective Kahler potential:

$$\mathcal{L}_{\text{eff.}} = \frac{m_{3/2}}{M_E M_L} h_d \tilde{e}^c l_1 N \quad \subset \quad \int d^2 \theta d^2 \bar{\theta} \, \left[\frac{\Sigma^{\dagger}}{M_P M_E M_L} h_d e^c l_1 N + \text{h.c.} \right]$$

- The low energy field spectrum is exactly the same as that of the MSSM except for a neutral singlet N.
 — gauge coupling unif. at 10¹⁸ GeV
- The low energy symmetry is just that of SM and R-parity.
- For lighter M, (~10¹² GeV), one can rescue the MSSM CDM scenario.

 The low energy field spectrum is exactly the same as that of the MSSM except for a neutral singlet N.
 → gauge coupling unif. at 10¹⁶ GeV

- The low energy symmetry is just that of SM and R-parity.
- For lighter M, (~10¹² GeV), one can rescue the MSSM CDM scenario.

 The low energy field spectrum is exactly the same as that of the MSSM except for a neutral singlet N.
 → gauge coupling unif. at 10¹⁶ GeV

- The low energy symmetry is just that of SM and R-parity.
- For lighter M, (~10¹² GeV), one can rescue the MSSM CDM scenario.

 The low energy field spectrum is exactly the same as that of the MSSM except for a neutral singlet N.
 → gauge coupling unif. at 10¹⁶ GeV

- The low energy symmetry is just that of SM and R-parity.
- For lighter M_{\star} (~10¹² GeV), one can rescue the MSSM CDM scenario.

For explaining PAMELA/Fermi clata, we need a DM clecay model having

- Leptophilic YUKAWA int. between superheavy fields and DM,
- Other (global) symmetry for dim. 6
 decay dominance,
- An extra DM component with TeV scale mass for low energy SUSY.

We proposed two 2-DM cleasy models, in which

For explainig PAMELA/Fermi data, we need a DM decay model having

- Leptophilic YUKAWA int. between superheavy fields and DM,
- Other (global) symmetry for dim. 6
 decay dominance,
- An extra DM component with TeV scale mass for low energy SUSY.

Wa proposa two 2-DM clacay models, in which

For explainig PAMELA/Fermi data, we need a DM decay model having

- Leptophilic int. between superheavy fields and DM,
- Other (global) symmetry for dim. 6
 decay dominance,
- An extra DM component with TeV scale mass for low energy SUSY.

We propose two 2-DM cleasy models, in which

For explainig PAMELA/Fermi data, we need a DM decay model having

- Leptophilic int. between superheavy fields and DM,
- Other (global) symmetry for dim. 6 decay dominance,
- An extra DM component with TeV scale mass for low energy SUSY.

Wa proposa two 2-DM clacay models, in which

For explainig PAMELA/Fermi data, we need a DM decay model having

- Leptophilic int. between superheavy fields and DM,
- Other (global) symmetry for dim. 6 decay dominance,
- An extra DM component with TeV scale mass for low energy SUSY.

Wa proposa two 2-DM clacay models, in which

For explainig PAMELA/Fermi data, we need a DM decay model having

- Leptophilic int. between superheavy fields and DM,
- Other (global) symmetry for dim. 6 decay dominance,
- An extra DM component with TeV scale mass for low energy SUSY.

We propose two 2-DM decay models, in which

- Explain PAMELA/Fermi data with leptophilic YUKAWA couplings between GUT scale fields and an extra DM component N ($N \rightarrow \chi I^+I^-$).
- Even extremely small amount of N can explain the PAMELA/Fermi clata.
- The nobleness of the MSSM (SUSY at 10² GeV, gauge coupling unif., xCDM) can be maintained.
- The models can be easily embedded in Flipped SU(5), which is the leptophilic GUT.

- Explain PAMELA/Fermi data with leptophilic YUKAWA couplings between GUT scale fields and an extra DM component N ($N \rightarrow \chi I^+I^-$).
- Even extremely small amount of N can explain the PAMELA/Fermi data.
- The nobleness of the MSSM (SUSY at 10² GeV, gauge coupling unif., xCDM) can be maintained.
- The models can be easily embedded in Flipped SU(5), which is the leptophilic GUT.

- Explain PAMELA/Fermi data with leptophilic YUKAWA couplings between GUT scale fields and an extra DM component N ($N \rightarrow \chi I^+I^-$).
- Even extremely small amount of N can explain the PAMELA/Fermi data.
- The nobleness of the MSSM (SUSY at 10² GeV, gauge coupling unif., χCDM) can be maintained.
- The models can be easily embedded in Flipped SU(5), which is the leptophilic GUT.

- Explain PAMELA/Fermi data with leptophilic YUKAWA couplings between GUT scale fields and an extra DM component N ($N \rightarrow \chi I^+I^-$).
- Even extremely small amount of N can explain the PAMELA/Fermi data.
- The nobleness of the MSSM (SUSY at 10² GeV, gauge coupling unif., χCDM) can be maintained.
- The models can be easily **embedded in Flipped** SU(5), which is the leptophilic GUT.

Problems in DM annihilation

- Should overcome the helicity suppr.
- Serious gamma ray constraint (TeV DM)
- Introduction of a new TeV DM and new interactions are Ad hoc.

Problems in DM decay

- Desired relic density is not automatic.
- Need a natural explanation for 10⁻²⁶ sec.⁻¹ decay rate.
- Need an elaborate decay process for Fermi.
- Introduction of a new TeV DM and new interactions are Ad-hoc.

From now on, I will try to explain PAMELA only within the framework of a wellknown Particle physics model, SO(10) without introducing any new DM and new special interactions.

I suppose that DM is the bino-like LSP.

SO(10)

 $45_G = SM + {E,E^c} + N$ + {Q',Q'c} + {Q,Q^c; U,U^c}

SO(10) → SU(3)_cxSU(2)_LxSU(2)_RxU(1)_{B-L}=LR by <45_H>, {Q',Q'c}, {Q,Qc; U,Uc} massive

SO(10) → SU(5) by <16_H>, <16_H> {E,E^c}, N, {Q,Q^c; U,U^c} massive <45_H> is 10¹⁶ GeV from RG eff.of the MSSM gauge couplings, but
 <16_H> is not pinned down yet.

$$\label{eq:hardensity} \begin{split} \|f < 45_H > > < 16_H > = < 16 \star_H > , \\ masses of \{Q',Q'^c\}, \{Q,Q^c; U,U^c\} > \{E,E^c\}, N \end{split}$$

$$\label{eq:hardensity} \begin{split} |f <45_H> < <16_H> = <16\star_H> , \\ masses of \{E,E^c\}, N, \{Q,Q^c; U,U^c\}> \{Q',Q'^c\} \end{split}$$

So {Q,Q^c; U,U^c} are always heavier.

Superheavy fields in SO(10)

- Gauge boson/Gauginos of SO(10)/SM
- 「iplets in 10_i (={D^c, h_d}+{D, h_u})
 e.g. by 10_i <45_H> 10_i
- · GUT breaking Higgs

due to its VEV, they couple to MSSM fields only via non-renormalizable terms. They weakly coupled to SM

Superheavy fields in SO(10)

- Gauge boson/Gauginos of SO(10)/SM
- If the second secon
- · GUT breaking Higgs

due to its VEV, they couple to MSSM fields only via non-renormalizable terms. They weakly coupled to SM Superheavy fields in SO(10)

- Gauge boson/Gauginos of SO(10)/SM
- Triplets in 10_h (={D^c,h_d}+{D,h_u})
 e.g. by 10_h <45_H> 10_h
- · GUT breaking Higgs

due to its VEV, they couple to MSSM fields only via non-renormalizable terms. They weakly coupled to SM Superheavy fields in SO(10)

- Gauge boson/Gauginos of SO(10)/SM
- Triplets in 10_h (={D^c,h_d}+{D,h_u})
 e.g. by 10_h <45_H> 10_h
- GUT breaking Higgs

due to its VEV, they couple to MSSM fields only via non-renormalizable terms. They weakly coupled to SM

LSP decay due to sRH ν

- If (1) R-parity is absolutely preserved, and (2) χ is the LSP, χ can not decay.
- BUT if sRH v develops a VEV (R viol.), or sRH v is lighter than x (sRH v LSP), x could decay.
- RH v and sRH v are neutral singlets under SM. Were it not for W=lh_uv^c, it extremely weakly interacting with SM.

LSP decay due to sRH \boldsymbol{v}

- If (1) R-parity is absolutely preserved, and (2) x is the LSP, χ can not decay.
- BUT if sRH v develops a VEV (R viol.), or sRH v is lighter than χ (sRH v LSP), χ could decay.
- RH v and sRH v are neutral singlets under SM. Were it not for W=lhuv^c, it extremely weakly interacting with SM.

LSP decay due to sRH v

- If (1) R-parity is absolutely preserved,
 and (2) x is the LSP, x can not decay.
- BUT if sRH v develops a VEV (R viol.), or sRH v is lighter than χ (sRH v LSP), χ could decay.
- RH v and sRH v are neutral singlets under SM. Were it not for W=lh_uv^c, it extremely weakly interacting with SM.

Interactions of the MSSM fields and heavy gauginos

 $\tilde{e}_i^{c*} \nu_i^c \tilde{E}^c$, $\tilde{d}_i^{c*} u_i^c \tilde{E}^c$, $h_u^{+*} \tilde{h}_d^0 \tilde{E}^c$, $h_u^{0*} \tilde{h}_d^- \tilde{E}^c$ $\tilde{\nu}_i^{c*} e_i^c \tilde{E}$, $\tilde{u}_i^{c*} d_i^c \tilde{E}$, $h_d^{0*} \tilde{h}_u^+ \tilde{E}$, $h_d^{-*} \tilde{h}_u^0 \tilde{E}$ $\tilde{\nu}_i^{c*} \nu_i^c \tilde{N}$, $\tilde{e}_i^{c*} e_i^c \tilde{N}$, $\tilde{u}_i^{c*} u_i^c \tilde{N}$, $\tilde{d}_i^{c*} d_i^c \tilde{N}$ $h_{u}^{+*}\tilde{h}_{u}^{+}\tilde{N}$, $h_{d}^{0*}\tilde{h}_{d}^{0}\tilde{N}$, $h_{u}^{0*}\tilde{h}_{u}^{0}\tilde{N}$, $h_{d}^{-*}\tilde{h}_{d}^{-}\tilde{N}$ $\tilde{e}_i^{c*} q_i \tilde{Q}^{\prime c}$, $\tilde{d}_i^{c*} l_i \tilde{Q}^{\prime c}$, $\tilde{q}_i^* u_i^c \tilde{Q}^{\prime c}$ $\tilde{q}_i^* e_i^c \tilde{Q}'$, $\tilde{l}_i^* d_i^c \tilde{Q}'$, $\tilde{u}_i^{c*} q_i \tilde{Q}'$ $\tilde{\nu}_i^{c*} q_i \tilde{Q}^c$, $\tilde{u}_i^{c*} l_i \tilde{Q}^c$, $\tilde{q}_i^* d_i^c \tilde{Q}^c$ $\tilde{q}_i^* \nu_i^c \tilde{Q}$, $\tilde{l}_i^* u_i^c \tilde{Q}$, $\tilde{d}_i^{c*} q_i \tilde{Q}$ $\tilde{u}_i^{c*} \nu_i^c \tilde{U}^c$, $\tilde{l}_i^* q_i \tilde{U}^c$, $\tilde{d}_i^{c*} e_i^c \tilde{U}^c$ $\tilde{\nu}_i^{c*} u_i^c \tilde{U}$, $\tilde{q}_i^* l_i \tilde{U}$, $\tilde{e}_i^{c*} d_i^c \tilde{U}$

- $\sim <16_{H}> << <45_{H}>$, effectively LR model
- If sv^c is heavier than X,
 a non-zero VEV <sv^c> must be assumed.
- <u>Squarks, charged Higgs, and soft para.</u>
 are much heavier (1 TeV) than a <u>slepton.</u>
- For PAMELA, $m_{\chi} \sim 200 300$ GeV, Fermi is explained with astrophys. source.
- · One RH v is lighter than X.

- $<16_H><<<45_H>$, effectively LR model
- If sv^c is heavier than X,
 a non-zero VEV <sv^c> must be assumed.
- <u>Squarks, charged Higgs, and soft para.</u>
 are much heavier (1 TeV) than a <u>slepton.</u>
- For PAMELA, $m_{\chi} \sim 200 300$ GeV, Fermi is explained with astrophys. source.
- · One RH v is lighter than X.

- $<16_H><<<45_H>$, effectively LR model
- If sv^c is heavier than χ, a non-zero VEV <sv^c> must be assumed.
- <u>Squarks, charged Higgs, and soft para</u>, are much heavier (1 TeV) than a <u>slepton.</u>
- For PAMELA, $m_{\chi} \sim 200 300$ GeV, Fermi is explained with astrophys. source.
- · One RH v is lighter than X.

- $<16_H><<<45_H>$, effectively LR model
- If sv^c is heavier than χ, a non-zero VEV <sv^c> must be assumed.
- <u>Squarks, charged Higgs, and soft para.</u> are much heavier (1 TeV) than a <u>slepton.</u>
- \sim For PAMELA, $m_{\chi} \sim 200 300$ GeV,
- Fermi is explained with astrophys. source.
- · One RH v is lighter than X.

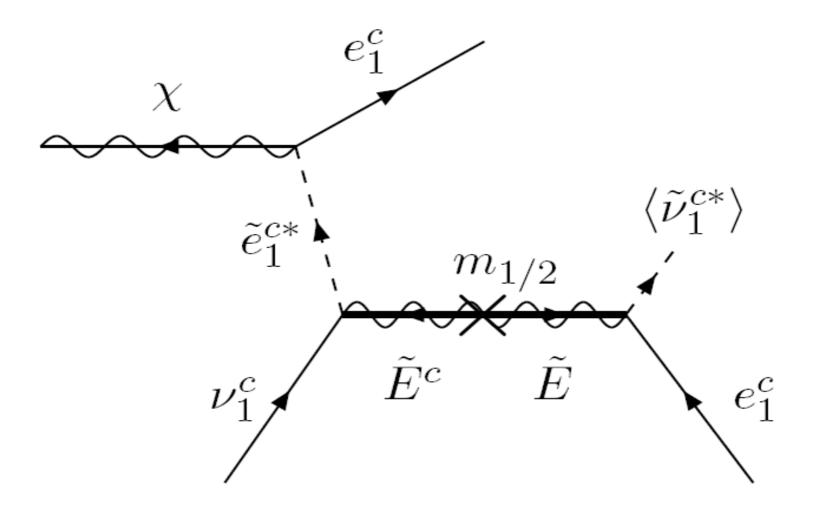
- $<16_H><<<45_H>$, effectively LR model
- If sv^c is heavier than χ, a non-zero VEV <sv^c> must be assumed.
- <u>Squarks, charged Higgs, and soft para.</u> are much heavier (1 TeV) than a <u>slepton.</u>
- For PAMELA, $m_{\chi} \sim 200 300$ GeV, Fermi is explained with astrophys. source.
- · One RH v is lighter than X.

- $<16_H><<<45_H>$, effectively LR model
- If sv^c is heavier than χ, a non-zero VEV <sv^c> must be assumed.
- <u>Squarks, charged Higgs, and soft para.</u> are much heavier (1 TeV) than a <u>slepton.</u>
- For PAMELA, $m_{\chi} \sim 200 300$ GeV, Fermi is explained with astrophys. source.
- One RH v is lighter than χ .

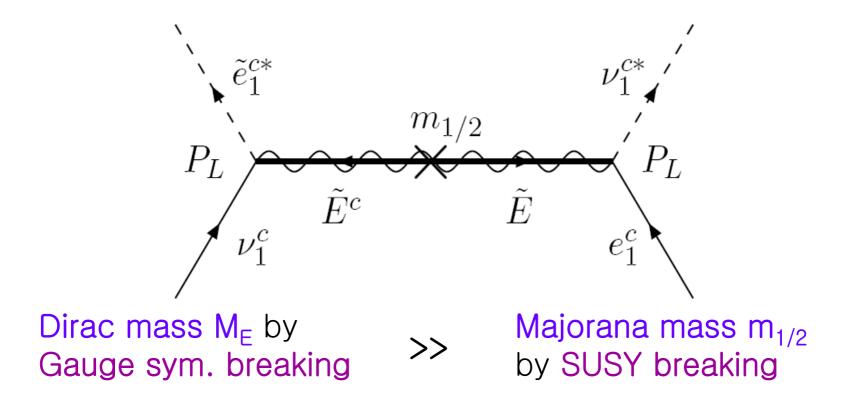
$$W_{\nu} = y_{ij}^{(\nu)} \ l_i h_u \nu_j^c (j \neq 1) + \frac{1}{2} M_{i,j} \ \nu_i^c \nu_j^c (i, j \neq 1),$$

$$m_{\nu} = m_{\nu}^{T} = -\begin{pmatrix} 0 & v_{12} & v_{13} \\ 0 & v_{22} & v_{23} \\ 0 & v_{32} & v_{33} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & M_{22}^{-1} & M_{23}^{-1} \\ 0 & M_{23}^{-1} & M_{33}^{-1} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ v_{12} & v_{22} & v_{32} \\ v_{13} & v_{23} & v_{33} \end{pmatrix}$$

Still 3 LH v can be maximally mixed. [Frampton, Glashow, Yanagida (2002)] If sRHv is lighter than χ , a VEV of sRHv is not essential. \rightarrow 4 bdy decay !!

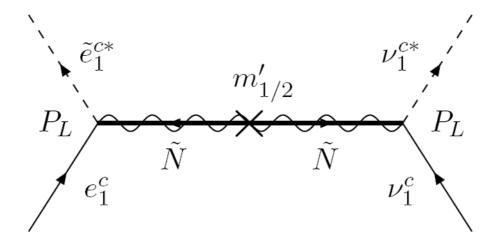

Just for simplicity, assume a VEV of sRHv. $(\rightarrow 3 \text{ bdy decay})$ e.g. by

$$W \supset \frac{1}{M_P} \langle \overline{\mathbf{16}}_H \rangle \mathbf{16}_1 S^2 + S^3$$


 $R(16_1) = R(S) = 2/3$ $R(16*_{H}) = 0$ $\langle \tilde{\nu}_1^c \rangle \sim m_{3/2} \times \frac{M_E}{M_P}$

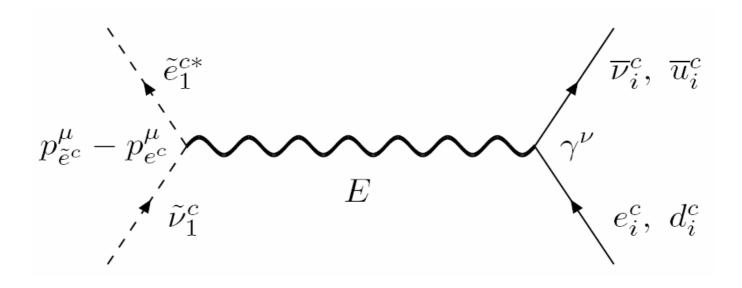
including soft terms in V,

LSP decay diagram

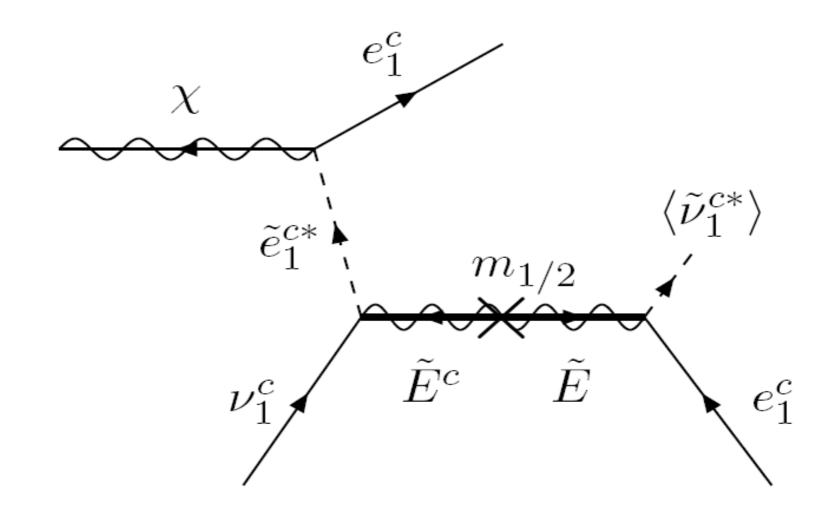

Charged gaugino mediation

This diagram is suppressed by

 $m_{1/2}/M_{E}^{2}$


Neutral gaugino mediation

 $g_{LR} = (2/3)^{1/2} g_{B-L} = g_{10}$ $M_N = M_E x (5/2)^{1/2}$ Eff. coupling is $\frac{1}{4}$ of the C.C. case.


Suppressed by $2/5 \times 1/4 = 1/10$ Compared to the C.C. case

Charged gauge field mediation

A derivative coupling is involved.

Since $m_{1/2} \gg m_{\chi}$, this diagram is suppressed.

The 1st realization of $\Gamma_{\chi} \sim 1/M_{GUT}^4$ from the gauge interaction

The decay rate of χ is

$$\Gamma_{\chi} = \frac{\alpha_{10}^2 \alpha' m_{\chi}^5}{96 M_E^4} \left(\frac{m_{1/2} \langle \tilde{\nu}_1^c \rangle}{m_{\tilde{e}_1^c}^2} \right)^2 \sim \frac{\alpha_{10}^2 \alpha' m_{\chi}^5}{96 M_E^2 M_P^2} \left(\frac{m_{1/2} m_{3/2}}{m_{\tilde{e}_1^c}^2} \right)^2 \sim 10^{-26} \text{ sec.}^{-1}$$

To be consistent with the PAMELA's data,

 $M_{\rm E} \sim \langle 16^{\rm H} \rangle \sim 10^{14} \, {\rm GeV}$

2 RHV masses ~ 10^{10} GeV

The decay rate of χ is

$$\Gamma_{\chi} = \frac{\alpha_{10}^2 \alpha' m_{\chi}^5}{96 M_E^4} \left(\frac{m_{1/2} \langle \tilde{\nu}_1^c \rangle}{m_{\tilde{e}_1^c}^2} \right)^2 \sim \frac{\alpha_{10}^2 \alpha' m_{\chi}^5}{96 M_E^2 M_P^2} \left(\frac{m_{1/2} \ m_{3/2}}{m_{\tilde{e}_1^c}^2} \right)^2 \sim 10^{-26} \text{ sec.}^{-1}$$

To be consistent with the **PAMELA**'s data, $M_{\scriptscriptstyle F} \sim \ <16_{\scriptscriptstyle H}\!> \ \sim \ 10^{14} \ GeV$ 2 RH v masses $\sim 10^{10}$ GeV from $W \supset \frac{1}{M_{P}} \langle \overline{\mathbf{16}}_{H} \rangle \langle \overline{\mathbf{16}}_{H} \rangle \langle \mathbf{\overline{16}}_{H} \rangle$

- Still the bino-like LSP DM scenario is consistent with PAMELA,
 - if sRH v develops a VEV or is lighter than bino, and a RH v is light enough.
- SO(10) provides a relatively predictable explanation.
- In the specific case, LR breaking scale is 10¹⁴ GeV, and the seesaw scale is 10¹⁰ GeV.

- Still the bino-like LSP DM scenario is consistent with PAMELA,
 - if sRH v develops a VEV or is lighter than bino, and a RH v is light enough.
- SO(10) provides a relatively predictable explanation.
- In the specific case, LR breaking scale is 10¹⁴ GeV, and the seesaw scale is 10¹⁰ GeV.

- Still the bino-like LSP DM scenario is consistent with PAMELA,
 - if sRH v develops a VEV or is lighter than bino, and a RH v is light enough.
- SO(10) provides a relatively predictable explanation.
- In the specific case, LR breaking scale is 10¹⁴ GeV, and the seesaw scale is 10¹⁰ GeV.

- Still the bino-like LSP DM scenario is consistent with PAMELA,
 - if sRH v develops a VEV or is lighter than bino, and a RH v is light enough.
- SO(10) provides a relatively predictable explanation.
- In the specific case, LR breaking scale is 10¹⁴ GeV, and the seesaw scale is 10¹⁰ GeV.